If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+7x-210=0
a = 7; b = 7; c = -210;
Δ = b2-4ac
Δ = 72-4·7·(-210)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-77}{2*7}=\frac{-84}{14} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+77}{2*7}=\frac{70}{14} =5 $
| -3/6x-8/21x+1/3x=-50 | | 1/3(x+1)=2/3-5x | | 3/2x=5/6x | | 15=7x-56x | | −2x+7=23 | | 3/2x=6/x-3 | | -56=-47+x | | 15/25=x/100 | | (x+8)2-x(x+8)=0 | | 4x+43=6x+17 | | 5. (x+8)2-x(x+8)=0 | | 3+5-7x=-64 | | 10=7t+9 | | 8x+7=-7+6x+18 | | 9(x+5)+7(x+5)=6x-6 | | -6(k-2)+4k=54 | | 2x(2x+3)+2x=(3x+5)= | | 5(23-10r)=15 | | 5*1.8y=9y | | 3+5(x-1)=16+3x | | 2a+2/3=8 | | 2(4−3x)=8x−13 | | 225-4x=62 | | 5(3x-4)-x=8 | | 3-(23+15n)=25 | | 20x-4=168÷x | | 0.2=14-(5.6+x) | | 2x+5(x-1)=6-3x | | 6–y=2y–6 | | .2=(14-(5.6+x) | | 2x=5(x-1)=6-3x | | x2+5x–104=0 |